Average Collisional Vibrational Energy Transfer Quantities and the Inversion Temperature D. C. Tardy and B. S. Rabinovitch Department of Chemistry BG-10 University of Washington Seattle, Washington 98195 Technical Report No. NR092-549-TR31 Contract N00014-75-C-0690, NR-092-549 March 15, 1985 Prepared for Publication in J. Phys. Chem. TIC FILE COPY OFFICE OF NAVAL RESEARCH Department of the Navy, Code 432 800 N. Quincy Arlington, VA 22217 Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public recept its distribution is unlimited. 85.03.29.020 | REPORT DOCUMENTATION | READ INSTRUCTIONS BEFORE COMPLETING FORM | | | |--|--|--|--| | NRO92-549-TR31 | 2. GOVT ACCESSION NO. 43-A152674 | 3. RECIPIENT'S CATALOG NUMBER | | | A TITLE (and Subtitle) Average Collisional Vibrational Energy Transfer Quantities and the Inversion Temperature | | 5. TYPE OF REPORT & PERIOD COVERED Technical | | | | | 6. PERFORMING ORG. REPORT NUMBER | | | D.C. Tardy and B.S. Rabinovitch | | 8. CONTRACT OR GRANT NUMBER(*) N00014-75-C-0690 NR092-549 | | | Professor B.S. Rabinovitch Department of Chemistry BG-10 University of Washington, Seattle, WA 98195 | | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | Office of Naval Research, Code 432 | 2 | March 15, 1985 | | | Department of the Navy
800 N. Quincy, Arlington, VA 2221 | | 13. NUMBER OF PAGES | | | 14 MONITORING AGENCY NAME & ADDRESS(If different | t from Controlling Office) | 15. SECURITY CLASS. (of this report) Unclassified | | | | | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE | | | 16 DISTRIBUTION STATEMENT of this Reports | | 33.125022 | | | This document has been approved for unlimited. 17. DISTRIBUTION STATEMENT (of the abatract entered) | | | | | 18 SUPPLEMENTARY NOTES | | | | | | | | | | Effective Temperature Energy Transfer High Temperature Inversion Temperature | Surfaces
Tin
Unimolecula
Vibrationa | ar Reaction
1 Relaxation | | | Collisional efficiencies for vibrational er quantities < $\Delta E > 0$ and < $\Delta E > 0$ all tunction of molecular complexity, critic transfer step size. Model calculation chloride and for the isomerization cycloheptatriene. For large step size | nese quantities ha
al-reaction threshe
ons were made fo
ns of methyl is | ave been examined here as a bld. E. temperature and energy or the decomposition of nitryl ocyanide, cyclopropane and | | #### Abstract (Continued) high temperatures up transitions dominate and $<\Delta E>_{all}=<\Delta E>_{d}$. An inversion temperature T_l is predicted when $p_{up}=p_{down}$; this temperature is quasi-independent of step size and dependent on molecular energy and molecular complexity. T_l is used to compute an effective temperature which can be used to give an analytical expression which relates $<\Delta E>_{all}$ and $<\Delta E>_{d}$. ## AVERAGE CULLISIONAL VIBRATIONAL ENERGY TRANSFER QUANTITIES AND THE INVERSION TEMPERATURE D.C. Tardy Department of Chemistry University of Iowa Iowa City, Iowa 52242 and B.S. Rabinovitch Department of Chemistry University of Washington Seattle, Washington 98195 #### Abstract Collisional efficiencies for vibrational energy transfer have previously been related to the quantities, $\langle \Delta E \rangle_d$ and $\langle \Delta E \rangle_{all}$. These quantities have been examined here as a function of molecular complexity, critical reaction threshold, E_o , temperature and energy transfer step size. Model calculations were made for the decomposition of nitryl chloride and for the isomerizations of methyl isocyanide, cyclopropane and cycloheptatriene. For large step size and low temperature, $\langle \Delta E \rangle_{all} = -\langle \Delta E \rangle_d$; at high temperatures up transitions dominate and $\langle \Delta E \rangle_{all} = \langle \Delta E \rangle_d$. An inversion temperature T_I is predicted when $P_{up} = P_{down}$; this temperature is quasi-independent of step size and dependent on molecular energy and molecular complexity. T_I is used to compute an effective temperature which can be used to give an analytical expression which relates $\langle \Delta E \rangle_{all}$ and $\langle \Delta E \rangle_d$ #### Introduction The collisional vibrational deactivation efficiency, β_c , has been used successfully to parameterize thermal unimolecular reactions involving weak colliders. Tardy and Rabinovitch^{1,2} and Troe³ have developed expressions relating β_c to average energy transferred quantities, $\langle \Delta E \rangle_d$ and $\langle \Delta E \rangle_{all}$, respectively. These quantities are defined as: $$\langle \Delta E \rangle_{d} = \int_{0}^{E} (E^{\dagger} - E) P(E^{\dagger}, E) dE^{\dagger} / \int_{0}^{E} P(E^{\dagger}, E) dE^{\dagger}$$ $$\langle \Delta E \rangle_{all} = \int_{0}^{\infty} (E^{\dagger} - E) P(E^{\dagger}, E) dE^{\dagger} / \int_{0}^{\infty} P(E^{\dagger}, E) dE^{\dagger}$$ also, $$\langle \Delta E \rangle_{u} = \int_{E}^{\infty} (E^{\dagger} - E) P(E^{\dagger}, E) dE^{\dagger} / \int_{E}^{\infty} P(E^{\dagger}, E) dE^{\dagger}$$ where $P(E^{1},E)$ is the probability that a molecule with internal energy E will have E^{1} after collision; additionally, $$\langle \Delta E \rangle_{all} = \langle p \rangle_{up} \langle \Delta E \rangle_{u} - \langle p \rangle_{down} \langle \Delta E \rangle_{d} ;$$ where, $$\langle p \rangle_{up} = \int_{E}^{\infty} P(E^{\dagger}, E) dE^{\dagger} / \int_{o}^{\infty} P(E^{\dagger}, E) dE^{\dagger}$$ and $$\langle p \rangle_{down} = \int_{o}^{E} P(E^{\dagger}, E) dE^{\dagger} / \int_{o}^{\infty} P(E^{\dagger}, E) dE^{\dagger}$$ These quantities are related by completeness, $\int_0^\infty P(E^l,E)dE^l=1$, and detailed balance, $(P(E^l,E)/P(E,E^l)=\rho_E^l/\rho_E\exp[-(E^l-E)/RT])$. Note that the sign convention makes $\langle \Delta E \rangle_{all} = -\langle \Delta E \rangle_d$ when $\langle p \rangle_{down} = 1$, and $\langle \Delta E \rangle_{all} = \langle \Delta E \rangle_u$ when $\langle p \rangle_{down} = 0$. Although the $P(E^l,E)$ are not known <u>a priori</u>, various limiting model types have been used for comparative purposes (step ladder, Gaussian, exponential, etc). Some confusion has resulted because $\langle \Delta E \rangle_d$ and $\langle \Delta E \rangle_{all}$ have both been used in the literature $^{4-7}$. Recently, Gilbert has shown that $\langle \Delta E \rangle_d$ is the more appropriate quantity to use in parameterizing β_c . Oref and coworkers in a series of papers have given exhaustive treatments of these parameters and their interrelations, for the case especially of Boltzmann-like transition probabilities. For a given $P(E^1,E)$ model, Barker⁶ has also shown that $\langle \Delta E \rangle_{all}$ can change sign with temperature even though $\langle \Delta E \rangle_d$ does not. In the present work, we illustrate dependence of the ratio, $\gamma \text{=} \langle \Delta \text{E} \rangle_{\text{all}} / \langle \Delta \text{E} \rangle_{\text{d}}, \text{ on the quantities } \langle \Delta \text{E}_{\text{d}} \rangle \text{ and temperature and on reactant properties i.e. internal molecular parameters and critical energy for reaction, E_{o}.}$ #### Calculations Four prototype model reactions were used: decomposition of nitryl chloride and the isomerizations of methyl isocyanide, cyclopropane and cycloheptatriene. These reactants reflect differences in vibrational frequency patterns and molecular complexity, excitation levels and temperatures. Table 1 exhibits some pertinent quantities. For simplicity of exposition, a step ladder model of the collisional transition probabilities with step size ΔE was used ($\Delta E = \langle \Delta E \rangle_u = \langle \Delta E \rangle_d$), and the probabilities were computed at $E=E_0$: $$P_{up} / P_{down} = P(E_o + \Delta E, E_o) / P(E_o, E_o + \Delta E) = (\rho_{E_o + \Delta E} / \rho_{E_o}) \exp(-\Delta E / RT)$$ It is seen that the general definition of the energy ratio, $\gamma = \langle \Delta E \rangle_{all} / \langle \Delta E \rangle_{d}$, takes the form of eq. 1 for a step ladder model and is a function of step size, temperature, excitation level (critical reaction threshold) and molecular complexity; the last two dependencies enter through the density of states: $\gamma_{SL} = (\rho_{up} - \rho_{down}) = -[1 - \rho_{up} / \rho_{down}] / [1 + \rho_{up} / \rho_{down}]$ $$= -(1 - (\rho_{E_o} + \Delta E / \rho_{E_o}) \exp(-\Delta E / RT)) / (1 + (\rho_{E_o} + \Delta E / \rho_{E_o}) \exp(-\Delta E / RT))$$ (1) A plot of $\gamma_{\rm SL} = (\rho_{\rm E_0} + \Lambda_{\rm E}/\rho_{\rm E_0}) \exp(-\Delta E/{\rm RT})$ for a range of temperatures (200-16000 K) and step sizes (100-3200 cm⁻¹) is shown in Fig. 1 for the prototype systems. As required, a universal plot is observed. Equation (1) is simplified by replacing the density of states for the molecule by the density for s classical oscillators. Define $p_r = (p_{up}/p_{down})_{cl}$ as $$p_{r} = \left[1 + \frac{\Lambda E}{E_{o}}\right]^{s-1} \exp[-\Lambda E/RT] > 0;$$ so, $$\gamma_{Sl} = -(1-p_r)/(1+p_r)$$. For the case $\Delta E/E_{o} << 1$, $$p_r = \left(1 + \frac{\Delta E}{E_o}\right)^{s-1} e^{-\Delta E/RT} \simeq \left[1 + (s-1)\Delta E/E_o\right] e^{-\Delta E/RT} . \tag{2}$$ Thus, $\gamma_{\rm SL}$ < 0 for $\rm p_r$ > 1; or $\gamma_{\rm SL}$ > 0 for $\rm p_r$ < 1. These limits can be attained at high and low temperatures, respectively. In the low temperature limit, the Boltzmann factor dominates so that γ_{SL} is a function mainly of ΔE and T. In this limit, γ_{SL} increases from -1 with decrease in ΔE and with increase in temperature. In the high temperature limit, i.e. $\exp(-\Delta E/RT)^{-1}$, the density ratio dominates and γ_{SL} is a function of ΔE and $(s-1)/E_o$; γ_{SL} decreases from unity with decrease in ΔE . At the inversion temperature, T_I , the Boltzmann and density factors compensate one another, so that $p_{up} = p_{down}$ and $p_r = 1$. T_I is sufficiently greater than typical reaction temperatures so that it is only approached for reactants having an unusually small E_o and/or a large value of s. For the experimental systems under examination, this temperature might only be realized for cycloheptatriene (Table 1). T_I is the temperature for which E_o is coincident with the maximum in the classical energy distribution. It is evident from eq. (2) that $T_I = E_o / \{(s-1)R\}$. Thus, to this approximation, T_I is independent of step size (ΔE). Indeed for the prototype systems, only a weak dependence on ΔE is exhibited in Table 1. Also to be noted from Table 1 is that a larger reactant having a high E_o shows similar values (i.e. density ratios and T_I) to a smaller reactant having a low E_o , eg. C_3H_6 and CH_3NC . When $ho_{E_o + \Delta E}/ ho_{E_o}$ is only a weak function of molecular complexity, i.e. for $(s-1)\Delta E < E_o$, (see Table 1 for the case, $\Delta E < 400~{\rm cm}^{-1}$), γ_{SL} is expected to be a universal function of $\Delta E/RT$. To take the general effect of molecular complexity into account, an effective temperature can be used. Tardy and Rabinovitch¹ have done this by using a dimensionless parameter, $\langle \Delta E \rangle / \langle E^{+} \rangle$, where, $$\langle E^+ \rangle = \int_{E_0}^{\infty} (E - E_0) \rho(E) e^{-E/RT} dE / \int_{E_0}^{\infty} \rho(E) e^{-E/RT} dE$$ We now define an effective temperature, T_e as the temperature at which $p_r = \exp(-\Lambda E/RT_e)$; so that $T_e = T/(1-(s-1)RT/E_o) = T/(1-T/T_I) = T_I/(T_I-T)$; s is calculated from the density of states ratio at E_o i.e. $s = 1 + \ln(\rho_{E_o} + \Lambda E/\rho_{E_o}) / \ln((E_o + \Lambda E)/RT)$. For $T < \langle T_I, T_e \rightarrow T$, and for $T > \langle T_I, T_e \rightarrow T_I$. A discontinuity occurs when $T = T_I$; in this case $1/T_e = 0$. Figure 2 illustrates the dependence of γ_{SL} on T_e for the prototype systems: a near-universal curve results. A shotgun pattern results if $\langle \Lambda E \rangle / RT$ is used (not shown). Earlier work in the literature for an exponential model³ related $\langle \Delta E \rangle_d$ and $$\langle \Delta E \rangle_{all}$$ by the equation, $\gamma_{Exp} = \frac{\langle \Delta E \rangle_d}{\langle \Delta E \rangle_d} = \frac{-\langle \Delta E \rangle_d}{\langle \Delta E \rangle_d + RT} = \frac{-\langle \Delta E \rangle_d}{\langle \Delta E \rangle_d + F_E RT}$ (3) The F_E correction was added in fater work and was stated to be near unity, in practice. As has been noted, this expression does not take into account the required sign change for γ_{Exp} . In the weak collision limit ($\beta_c < 0.03$) or $\langle \Delta E \rangle_d \langle \langle kT \rangle$, $\gamma_{Exp} \simeq -\langle \Delta E \rangle_d \langle F_E kT \rangle$, i.e. γ_{Exp} is linear with $\langle \Delta E \rangle_d$. For the region ($|\gamma_{SL}| < 0.4$), the present work illustrates that γ_{SL} is linear with $\langle \Delta E \rangle_d$ with a slope of $\sim -1/(2RT_e)$ (Fig 2); the slope depends on T_e , which is usually positive. Additionally, if eq (3) is adopted for the step ladder case, then it is seen that $F_F = 2[1+(s-1)RT/E_o]$ or $F_F > 2$, always. Using T_e , eq 1 gives γ_{SL} =-tanh($\Lambda E/2RT_e$). Thus we have determined a relation which is valid for all step sizes and all temperatures and which is substantially easier to use than solving an integro-differential equation 4 . From the above relation, $\langle \Lambda E \rangle_{all}$ is easily computed from $\langle \Lambda E \rangle_d$ and T_e . Due to the transcendental nature of the function, indirect methods are required to obtain $\langle \Delta E \rangle_d$ from $\langle \Delta E \rangle_{all}$ and T_e (Regula Falsi, Newton-Raphson or, simply, by iteration on Fig 2). In future work, we will present the results for the exponential model which can be directly compared to the expression developed by ${\rm Troe}^8$; different analytical expressions for $\rho_{\rm E}$ will also be evaluated. Conclusions These calculations demonstrate that for low temperature and large step size $(p_{down}\sim 1)$, $\langle \Delta E \rangle_{all} = -\langle \Delta E \rangle_d$; as step size decreases, or temperature increases, $\langle \Delta E \rangle_{all}$ increases. An inversion temperature T_I is reached when $p_{down}=p_{up}$; for this condition $\langle \Delta E \rangle_{all}=0$. With increasing temperature, $p_{up} > p_{down}$, and $\langle \Delta E \rangle_{all}$ becomes positive; in the limit $\langle \Delta E \rangle_{all}=\langle \Delta E \rangle_d$. In general, T_I is much larger than normal reaction temperatures; T_I decreases with molecular complexity and increases with E_o . Thus, for large molecules with low E_o , the difference between $-\langle \Delta E \rangle_{all}$ and $\langle \Delta E \rangle_d$ will be large. The functional dependence of the density of states on excitation level and number of oscillators has been used to show that a large molecule with a high $\rm E_{o}$ behaves in a manner similar to a small molecule with low $\rm E_{o}$; and to develop a universal equation relating $\gamma_{\rm SL}$ to $\langle \Delta E \rangle_{\rm d}$ and $\rm T_{e}$. #### Acknowledgment This work was supported in part by the National Science Foundation and by the Office of Naval Research and by the University of Iowa Graduate College computing fund. #### References - D.C. Tardy and B.S. Rabinovitch, J. Chem. Phys. 45 (1966) 3720 and J. Chem. Phys. 48 (1968) 1282. - 2. D.C. Tardy and B.S. Rabinovitch, Chem. Rev. 77 (1977) 369. - J. Troe, Ber. Bunsenges Phys. Chem. 78 (1974) 478. - 4. R.G. Gilbert, Chem. Phys. Lett. 96 (1983) 259. - 5. I. Oref, J. Chem. Phys. 77 (1982) 5146; for a late paper in the series with earlier references see I. Oref and B.S. Rabinovitch, J. Chem. Soc. Faraday. Trans. 1, 80 (1984) 769. - 6. J.R. Barker and R.E. Golden, J. Phys. Chem. 88 (1984) 1012. - a) W.S. Kolin, M. Johnson, D.E. Peebles and J.W. Simons, Chem. Phys. Lett. 65 (1979) 85. - b) T.C. Brown, K.D. King and R.G. Gilbert, Int. J. Chem. Kinet. 16 (1984) 1455. - c) G. Arbilla, J.C. Ferrero and E.H. Staricco, J. Phys. Chem. 87 (1983) 3906. - d) T.C. Brown, J.A. Taylor, K.D. King and R.G. Gilbert, J. Phys. Chem. 87 (1983) 5214. - e) I. Szłagyi, L. Zalotai, T. Berces and F. Marta, J. Phys. Chem. 87 (1983) 3694. - f) H.M. Frey and H.P. Watts, J. Chem. Soc. Faraday Trans I, 79 (1983) 1659. - g) J.R. Cao and M.H. Back, J. Phys. Chem. 88 (1984) 3074. - 8. J. Troe, J. Chem. Phys., 66 (1977) 4758. Table 1 Reactant Parameters and Calculational Results | 1 | 1600 | 3903 | 2802 | 2644 | 1406 | |--|------|-------|----------|-----------------------|---------| | Exact T ^C AE(cm ⁻¹) | 800 | 3791 | 2847 | 2613 | 1388 | | | 400 | 3733 | 2820 | 2597 | 1378 | | | 200 | 3704 | 2806 | 2589 | 1374 | | 2 | 100 | 3690 | 2799 | 2585 | 1372 | | Approxb
I _I | | 3697 | 2813 | 2634 | 1380 | | | 1600 | 1 803 | 2 210 | 2 389 | 5 42 | | c | 800 | 1 355 | 1 498 | 1 554 | 2 292 | | $\rho_{E_o} + \Lambda F^{/\rho} F_o$ $\Lambda E (cm^{-1})$ | 400 | 1 167 | 1 226 | 1 248 | 1 518 | | | 200 | 1 081 | 1 118 | 1 118 | 1 233 | | | 100 | 1 040 | 1 053 | 1 057 | 1 111 | | Class
satto | | 5 1 | 6 7 | 13 2 | 20 0 | | 1 (x) | | 455 | 546 | 720 | 650 | | F. (cm·1) | | 10325 | 13300 | 21875 | 18000 | | S | | | 12 | 7 | £. | | Reservant | | NO.C. | 、ソ
、こ | ا
ت
د
د
د | # 3 0 0 | ar lyc car thermal rection temperture to $1/\epsilon$ constrained from the $\Gamma_{ m O}/({ m s}|1)$ R approximation in text is the exact temperature such that $p_{up} \equiv p_{down}$ for given step size of ΔE #### FIGURE CAPTIONS - 1. Plot of $\gamma_{\rm SL}$ vs $(\rho_{\rm E_0}+\Lambda {\rm E}/\rho_{\rm E_0})$ e^(- $\Lambda {\rm E/RT}$) for nitryl chloride, methyl isocyanide, cyclopropane and cycloheptatriene for step sizes of 100, 200, 400, 800, 1600 and 3200 cm⁻¹, each at 250, 500, 1000, 2000, 4000 and 8000 K. - 2. Plot of $\gamma_{\rm SL}$ vs $\langle \Delta E \rangle_d/{\rm RT_e}$; see legend of Figure 1. Te calculated from expression given in text. 1 h. Turn Fre The 1. #### No. Copies No. Copies Dr. L. V. Schmidt Dr. L. H. Caveny 1 Assistant Secretary of the Navy Air Force Office of Scientific (R,E, and S) Room 5E 731 Research Directorate of Aerospace Sciences Pentagon Washington, DC 20350 Bolling Air Force Base Washington, DC 20332 Dr. A. L. Slafkosky 1 Scientific Advisor Mr. Donald L. Ball 1 Commandant of the Marine Corps Air Force Office of Code RD-1 Scientific Research Washington, DC 20380 Directorate of Chemical Sciences Bolling Air Force Base Dr. Richard S. Miller 10 Washington, DC 20332 Office of Naval Research Code 413 Dr. John S. Wilkes, Jr. Arlington, VA 22217 FJSRL/NC USAF Academy, CO 80840 Mr. David Siegel 1 Office of Naval Research Dr. Philip Howe Code 260 Army Ballistic Research Labs Arlington, VA 22217 **ARRADCOM** Code DRDAR-BLT Office of Naval Research Aberdeen Proving Ground, MD 21005 Western Office 1030 East Green Street Mr. L. A. Watermeier Pasadena, CA 91106 Army Ballistic Research Labs ARRADCOM Dr. Larry Peebles 1 Code DRDAR-BLI Office of Naval Research Aberdeen Proving Ground, MD 21005 East Central Regional Office 666 Summer Street, Bldg. 114-D Dr. W. W. Wharton 1 Boston, MA 02210 Attn: DRSMI-RKL Commander Dr. Phillip A. Miller U.S. Army Missle Command Office of Naval Research Redstone Arsenal, AL 35898 Naval Station, Treasure Island Bldg. 7, Rm. 81 Mr. J. Murrin 1 San Francisco, CA 94130 Naval Sea Systems Command Code 62R2 Mr. Otto K. Heiney 1 Washington, DC 20362 AFATL - DLDL Eglin AFB, FL 32542 Dr. P. J. Pastine 1 Naval Surface Weapons Center Mr. R. Geisler 1 Code R04 ATTN: MKP/MS24 White Oak Silver Spring, MD 20910 Edwards AFB, CA 93523 Mr. L. Roslund Dr. F. Roberto 1 Naval Surface Weapons Center Code AFRPL MKPA Code R122 Edwards AFB, CA 93523 White Dak Silver Spring, MD 20910 | | | | |---|------------|---| | | No. Copies | No. Copies | | Mr. M. Stosz
Naval Surface Weapons Center
Code R121
White Oak
Silver Spring, MD 20910 | 1 | Dr. A. Faulstich 1
Chief of Naval Technology
MAT Code 0716
Washington, DC 20360 | | Dr. E. Zimmet
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910 | . 1 | LCDR J. Walker 1 Chief of Naval Material Office of Naval Technology MAT, Code 0712 Washington, DC 20360 | | Dr. D.R. Derr
Naval Wapons Center
Code 388
China Lake, CA 93555 | 1 | Dr. G. Bosmajian 1 Applied Chemistry Division Naval Ship Reserve & Development Center Annapolis, MD 21401 | | Mr. Lee N. Gilbert
Naval Weapons Center
Code 3205
China Lake, CA 93555 | 1 | Mr. R. Brown 1
Naval Air Systems Command
Code 330
Washington, DC 20361 | | Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555 | 1 | Dr. H. Rosenwasser 1
Naval Air Systems Command
AIR-310C
Wshington, DC 20360 | | Mr. R. McCarten
Naval Weapons Center
Code 3272
China Lake, CA 93555 | 1 | Mr. B. Sobers 1 Naval Air Systems Command CDde 03P25 Washington, DC 20360 | | Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555
Dr. R. Reed, Jr. | 1 | Dr. L. R. Rothstein 1 Assistant Director Naval Explosives Dev. Engineering Dept. Naval Weapons Station Yorktown, VA 23691 | | Naval Weapons Cneter
Code 388
China Lake, CA 93555 | | Dr. Lionel Dickinson 1
Naval Explosive Ordnance
Disposal Tech. Center | | Dr. L. Smith
Naval Weapons Center
Code 3205
China Lake, CA 93555 | 1 | Code D Indian Head, MD 20640 Mr. C. L. Adams 1 | | Dr. B. Douda
Naval Weapons Support Cente
Code 5042 | 1 | Navat Ordnance Station
Code PM4
Indian Head, MD 20640 | | Crane, IN 47522 | | Mr. S. Mitchell 1
Naval Ordnance Station
Code 5253
Indian Head, MD 20640 | | | <u> </u> | | |--|------------|---| | <u> </u> | No. Copies | No. Copies | | Dr. William Tolles
Dean of Research
Naval Postgraduate School
Monterey, CA 93940 | 1 | Dr. R. G. Rhoades 1 Commander Army Missile Command DRSMI-R | | Naval Research Lab.
Code 6100
Washington, DC 20375 | 1 | Redstone Arsenal, AL 35898 Dr. A. W. Barrows 1 Ballistic Research Laboratory | | Dr. J. Schnur | 1 | DRXBR-IBD
Aberdeen Proving Ground, MD 21005 | | Naval Research Lab.
Code 6510
Washington, DC 20375 | | Defense Technical Information 12
Center | | Mr. R. Beauregard
Naval Sea Systems Command
SEA 64E | 1 | DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | | Washington, DC 20362 Mr. G. Edwards | 1 | Ur. Ronald L. Simmons 1 Hercules Inc. Eglin AFATL/DLDL | | Naval Sea Systems Command
Code 62R3 | | Eglin AFB, FL 32542 | | Washington, DC 20362 Mr. John Boyle Materials Branch Nevel Ship Engineering Conton | 1 | Dr. J. F. Kincaid 1 Strategic Systems Project Office Department of the Navy Room 901 | | Naval Ship Engineering Center
Philadelphia, PA 19112 | 1 | Washington, DC 20376 Strategic Systems Project Office 1 | | Dr. H. G. Adolph
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910 | 1 | Propulsion Unit
Code SP2731
Department of the Navy
Washington, DC 20376 | | Dr. T. D. Austin
Naval Surface Weapons Center
Code R16 | 1 | Mr. E.L. Throckmorton 1
Strategic Systems Program Office
Code SP-2731
Washington, DC 20376 | | Indian Head, MD 20640
Dr. T. Hall | 1 | Dr. R. F. Walker 1
USA ARRADCOM | | Code R-11 Naval Surface Weapons Center White Oak Laboratory | 1 | DRDAR-LCE
Dover, NJ 07801 | | Silver Spring, MD 20910 | | Mr. J.M. Frankle 1 Army Ballistic Research Labs | | Mr. G. L. Mackenzie
Naval Surface Weapons Center
Code R101 | 1 | ARRADCOV
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | | Indian Head, MD 20640 Dr. K. F. Mueller | 1 | Dr. Ingo W. May 1
Army Ballistic Research Lab | | Naval Surface Weapons Center
Code R11
White Oak | • | AARADCOV Code DRDAR-BLI Aberdeen Proving Ground, MD 21005 | | Silver Spring, MD 20910 | | Abs. deen frorting dround, no 21005 | | <u>No</u> | . Copies | | No Copies | |---|-------------|--|-------------| | E. J. Palm
Commander
Army Missile Command
DRSMI-RK
Redstone Arsenal, AL 35898 | 1 | Dr. A. Karo Department of Chemistry & Materials Science L-325 Lawrence Livermore Nationa Livermore, CA 94550 | 1
I Lab. | | Dr. G. Neece
Office of Naval Research
Code 413
Arlington, VA 22207 | 1 | Prof. Julius Mack
7030 Oregon Ave. N.W.
Washingotn, DC 20015 | 1 | | Dr. L. D. Gardner
Smithsonian Astrophysical Obser
60 Garden Street
Cambridge, MA 02138 | 1
vatory | Dr. S. Sheffield
Sandia Laboratories
Division 2513
P.D. Box 5800
Albuquerque, NM 87185 | 1 | | Dr. E. Grant Department of Chemistry Cornell University Ithaca, New York 14853 | 1 | Prof. Curt Wittig
University of Southern Cal
Department of Chemistry
Los Angeles, CA 90089-048 | | | Dr. K. Kirby Center for Astrophysics 60 Garden Street Cambridge, MA 02138 | 1 | Dr. F. F. Crim
Department of Chemistry
University of Wisconsin
Madison, Wisconsin 53706 | 1 | | Dr. W. A. Lester, Jr. Department of Chemistry University of California Berkeley, CA 94720 | 1 | Dr. Peter Bernath
University of Arizona
Department of Chemistry
Tucson, AZ 85721 | 1 | | Prof. Richard A. Reinhardt
Naval Postgraduate School
Physics & Chemistry Dept.
Monterey, CA 93940 | 1 | Dr. M. Cowperthwaite
SRI International
333 Ravenswood Avenue
Menlow Park, CA 94025 | 1 | | Dr. T. Rivera
Los Alamos National Lab.
Explosives Technology
MS C920
Los Alamos, New Mexico 87145 | 1 | Dr. G. Adams
DRXBR-IBD
Ballistics Research Labora
Aberdeen Proving Ground, M | | | Dr. Andrew C. Victor
Naval Weapons Center
Code 3208
China Lake, CA 93555 | 1 | Dr. R. B. Kruse
Morton Thiokol, Inc.
Huntsville Division
Huntsville, AL 35807-7501 | 1 | | Dr. D. M. Golden
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 | 1 | Dr. R. E. Wyatt
Department of Chemistry
University of Texas
Austin, TX 78712 | 1 | | Dr. M. E. Jacox
Molecular Spectroscopy Div.
National Bureau of Standards
Gaithersburg, MD 20899 | 1 | Prof. John H. Clark
Department of Chemistry
University of California
Berkeley, California 94720 | 1 | ### DISTRIBUTION LIST | <u>No .</u> | Copies | | No. Copies | |---|---------|---|------------| | Dr. Tim Parr
Naval Weapons Center
Code 3891
China Lake, CA 93555 | 1 | Dr. B. Swanson
INC-4 MS C-346
Los Alamos National Laborat
Los Alamos, NM 87545 | 1
ory | | Dr. R. R. Alfano
Institute for Ultrafast Spectro-
scopy and Lasers-CCNY-Physics
138th Street Convent
New York, New York 10031 | 1 | Dr. Rodney J. Bartlett
Quantum theory Project
Williamson Hall
University of Florida
Gainesville, FL 32611 | 1 | | Dr. Steve Agnew
INC-4, MS C346
Los Alamos National Laboratory
Los Alamos, New Mexico 82545 | 1 | Dr. B. Junker
Office of Naval Research
Code 412
800 N. Qunicy Street
Arlington, VA 22217 | 1 | | Dr. Stephen L. Rodgers
AFRPL/LKLR
Edwards AFB, CA 93523 | 1 | Prof. H. A. Rabitz
Department of Chemistry
Princeton University | 1 | | Dr. T. L. Boggs
Naval Weapons Center
Code 3891
China Lake, CA 93555 | 1 | Princeton, NH 08540 Dr. M. Farber Space Sciences, Inc. | 1 | | D. Curran
SRI International
333 Ravenswood Avenue | 1 | 135 West Maple Avenue
Monrovia, CA 91016
Professor G. D. Duvall | 1 | | Menlo Park, CA 94025 Prof Kenneth Kuo | 1 | Washington State University
Department of Physics
Pullman, WA 99163 | ′ | | Pennysylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802 | | Professor Y. T. Lee
Department of Chemistry
University of California | 1 | | Dr. James T. Bryant
Naval Weapons Center
Code 3205B | 1 | Berkeley, CA 94720
Dr. R. Bernecker | 1 | | China Lake, CA 93555 Dr. W. L. Faust Naval Research Laboratory | 1 | Code R13
Naval Surface Weapons Cente
White Oak
Silver Spring, MD 20910 | er | | Code 6510
Washington, DC 20375 | | Dr. C. S. Coffey
Naval Surface Weapons Cent | 1
er | | Dr. J.M. Culver
Strategic Systems Projects Offic
SSPO/SP-2731
Crystal Mall #3, RM 1048 | 1
ce | Code R13
White Dak
Silver Spring, MD 20910 | | | Washington, DC 20376 Dr. Y. W. Gupta | 1 | Dr. F. Rentzepis
Bell Laboratories
Murray Hill, NJ 07971 | 1 | | Shock Dynamics Laboratory Department of Physics Washington State University Pullman, WA 99164 | - | ,, | | # END # FILMED 5-85 DTIC